Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Viruses ; 15(3)2023 02 28.
Article in English | MEDLINE | ID: covidwho-2275760

ABSTRACT

The importance of genomic surveillance on emerging diseases continues to be highlighted with the ongoing SARS-CoV-2 pandemic. Here, we present an analysis of a new bat-borne mumps virus (MuV) in a captive colony of lesser dawn bats (Eonycteris spelaea). This report describes an investigation of MuV-specific data originally collected as part of a longitudinal virome study of apparently healthy, captive lesser dawn bats in Southeast Asia (BioProject ID PRJNA561193) which was the first report of a MuV-like virus, named dawn bat paramyxovirus (DbPV), in bats outside of Africa. More in-depth analysis of these original RNA sequences in the current report reveals that the new DbPV genome shares only 86% amino acid identity with the RNA-dependent RNA polymerase of its closest relative, the African bat-borne mumps virus (AbMuV). While there is no obvious immediate cause for concern, it is important to continue investigating and monitoring bat-borne MuVs to determine the risk of human infection.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , Mumps virus/genetics , Phylogeny , SARS-CoV-2 , Genomics , Asia, Southeastern/epidemiology , Paramyxoviridae/genetics
2.
Cell Rep ; 33(5): 108345, 2020 11 03.
Article in English | MEDLINE | ID: covidwho-898566

ABSTRACT

Bat cells and tissue have elevated basal expression levels of antiviral genes commonly associated with interferon alpha (IFNα) signaling. Here, we show Interferon Regulatory Factor 1 (IRF1), 3, and 7 levels are elevated in most bat tissues and that, basally, IRFs contribute to the expression of type I IFN ligands and high expression of interferon regulated genes (IRGs). CRISPR knockout (KO) of IRF 1/3/7 in cells reveals distinct subsets of genes affected by each IRF in an IFN-ligand signaling-dependent and largely independent manner. As the master regulators of innate immunity, the IRFs control the kinetics and maintenance of the IRG response and play essential roles in response to influenza A virus (IAV), herpes simplex virus 1 (HSV-1), Melaka virus/Pteropine orthoreovirus 3 Melaka (PRV3M), and Middle East respiratory syndrome-related coronavirus (MERS-CoV) infection. With its differential expression in bats compared to that in humans, this highlights a critical role for basal IRF expression in viral responses and potentially immune cell development in bats with relevance for IRF function in human biology.


Subject(s)
Chiroptera/immunology , Gene Expression Regulation/immunology , Interferon Regulatory Factor-1/immunology , Interferon Regulatory Factor-7/immunology , Virus Diseases/immunology , Animals , Herpesvirus 1, Human/immunology , Influenza A virus/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Orthoreovirus/immunology
3.
N Engl J Med ; 383(5): 452-459, 2020 07 30.
Article in English | MEDLINE | ID: covidwho-692294

ABSTRACT

BACKGROUND: Insufficient vaccine doses and the lack of therapeutic agents for yellow fever put global health at risk, should this virus emerge from sub-Saharan Africa and South America. METHODS: In phase 1a of this clinical trial, we assessed the safety, side-effect profile, and pharmacokinetics of TY014, a fully human IgG1 anti-yellow fever virus monoclonal antibody. In a double-blind, phase 1b clinical trial, we assessed the efficacy of TY014, as compared with placebo, in abrogating viremia related to the administration of live yellow fever vaccine (YF17D-204; Stamaril). The primary safety outcomes were adverse events reported 1 hour after the infusion and throughout the trial. The primary efficacy outcome was the dose of TY014 at which 100% of the participants tested negative for viremia within 48 hours after infusion. RESULTS: A total of 27 healthy participants were enrolled in phase 1a, and 10 participants in phase 1b. During phase 1a, TY014 dose escalation to a maximum of 20 mg per kilogram of body weight occurred in 22 participants. During phases 1a and 1b, adverse events within 1 hour after infusion occurred in 1 of 27 participants who received TY014 and in none of the 10 participants who received placebo. At least one adverse event occurred during the trial in 22 participants who received TY014 and in 8 who received placebo. The mean half-life of TY014 was approximately 12.8 days. At 48 hours after the infusion, none of the 5 participants who received the starting dose of TY014 of 2 mg per kilogram had detectable YF17D-204 viremia; these participants remained aviremic throughout the trial. Viremia was observed at 48 hours after the infusion in 2 of 5 participants who received placebo and at 72 hours in 2 more placebo recipients. Symptoms associated with yellow fever vaccine were less frequent in the TY014 group than in the placebo group. CONCLUSIONS: This phase 1 trial of TY014 did not identify worrisome safety signals and suggested potential clinical benefit, which requires further assessment in a phase 2 trial. (Funded by Tysana; ClinicalTrials.gov number, NCT03776786.).


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Yellow Fever Vaccine , Yellow Fever/drug therapy , Yellow fever virus/immunology , Adult , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacokinetics , Dose-Response Relationship, Drug , Double-Blind Method , Half-Life , Humans , Kaplan-Meier Estimate , Viremia/drug therapy , Yellow Fever/virology , Yellow fever virus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL